Archive

Posts Tagged ‘transgender’

A Look at Transgender Brains

January 4, 2012 5 comments

In a culture where transgender individuals seem misunderstood or misrepresented, 14-year-old Nicole Maines has broken societal restraints in her burgeoning journey as a transgender. Born as Wyatt Maines, Nicole and her identical twin brother Jonas were reportedly “different” from the start of their youth. As a younger boy, Nicole had expressed interests in girlish activities, such as wearing heels and playing Barbies, while Jonas had always favored sports and action. The twins’ growing differences persisted as their parents tried to evaluate the seriousness and possible consequences of Nicole’s girlish tastes. By the end of elementary school, Nicole changed her name from Wyatt and grew out her hair. Finally, the family discovered the Children’s Hospital Gender Management Services Clinic, a center that uses hormone treatment to gradually alter an individual into the opposite gender.

The clinic’s process consists of hormone suppressers that the youth takes in order to counteract the hormones released from the gender he or she was born as. These chemicals’ effects are reversible; if the patient stops consumption, he or she can undo the major consequences. Upon reaching adolescence, if the person still feels inclined to continue the process, he or she receives the unalterable treatment for the hormones of the opposite gender. The final step in the process, occurring after age 18, is the gender reassignment surgery, in which the individual comes to physically be the opposite gender.

Because she was an identical twin, Nicole offers a unique case study for the transgender population. Her circumstances allude to the longstanding debate on nature versus nurture. But while environmental and psychosocial factors may have influenced Nicole to favor the opposite gender’s tastes, it seems more likely that her state has arisen from the “nature” perspective because of the early onset of her transgender preferences.

Various studies have supported the “nature” theory of transgender alignment through observations and comparisons within the brain. In specific examples, prior post-mortem studies have demonstrated the similarities in the brains of male-to-female (MtF) transgenders and those of control females. The overall brain sizes from both of these groups are relatively smaller than that of the average male. Furthermore, particular brain structures, such as the anterior hypothalamic nucleus, have displayed greater likenesses in female and MtF brains than with males’ brains with regards to structural volume and density. (Nonetheless, such post-mortem results are ambiguous because of these MtF individuals’ estrogen-consumption that may have influenced specific brain masses either during or after the brain’s primary growth and development. In this case, the brain differences may be due to either pure “nature,” the effects of estrogen treatment, or both.)

A recent study has solved the inaccuracy caused by the estrogen-consumption of MtF transgenders. In this study, the researchers found 24 MtF transgenders who planned on taking hormone treatment in the future. The individuals qualified for the experiment if they had the sex-determining region Y (SRY) gene, which is unique to males. The brains of these 24 people were compared to the brains of female and male control groups. Because the transgenders had not received any treatment in the past, the experiment’s outcome was reliable and noteworthy.

Generally speaking, studies state that female brains—although relatively smaller than male brains—have less gray matter and more white matter due to the extra folds (fissures and sulci) in their brains. (Gray matter is the softer outer region of the brain; white matter is the slightly harder inner mass.) However, several specific structures in female brains have a greater gray matter volume than corresponding structures in male brains. The study used these particular structures in their experiment as they compared the size of each of these masses throughout the three groups. The ultimate question was whether transgender brains would show greater similarities with the brains of the initial gender (which, in this case, was male) or with the brains of the preferred gender (female).

The study revealed that all three groups had different gray matter volumes for the specified brain structures. While females had greater gray matter volume for these brain structures than those of males, transgender individuals displayed unique average gray matter volumes that correlated with neither those of the males nor females. Their gray matter volumes were generally slightly greater than the structural volumes of the control males; volumes were also more similar to the males’ than they were to the females’ structural volumes.

The main exception to this finding was the putamen, a round brain mass located near the center of the brain. The putamen, part of the basal ganglia structure, performs functions relating to motor movements and learning. The structure’s average gray matter volume in transgender individuals was far closer to the females’ average volume than the males’. As the researchers concluded, the transgenders’ putamen was one of the few structures to be so “feminized.”

The experiment was altogether interesting because it demonstrated unique differences in transgender brains that evidently occurred only by “nature,” since none of the MtF individuals had previously engaged in hormone treatment. The results proved that these transgenders’ brains were structurally similar and distinct.

Nonetheless, more must be at hand than simply “nature” superseding “nurture.” After all, Nicole Maines is a transgender, but her identical twin brother is not. Despite their matching DNA, there were probably biological, physiological, or mental differences between the twins that caused Nicole to make her decision.

Their situation thus leads us to epigenetics, a new flourishing subject in psychology and neuroscience that may explain transgender characteristics and why they might occur in only one identical twin despite their prevalently “nature” quality.

The field might explain why Nicole chose to be female before she could have had any environmental or psychosocial influence.

In the medical world, epigenetics could potentially help understand many disorders that seemingly occur by “nature.”

[To be continued.]